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DATA INTEGRATION

ENTERPRISE APPLICATION/INFORMATION INTEGRATION

(EAI/EII) IN GRID

In the chapter on Web Services, we will discuss an evolution to Web Services,

starting from the point-to-point integration of standalone systems, to the client/
server topology, to distributed computing [straight-through processing (STP)] and

finally to the grid topology and the compute utility. This is a long progression of

new and very different compute topologies that ushered in their own distinct oper-

ational environments, creating an intertwining that exists today. To better under-

stand information integration within the grid, let us take a brief look at the

evolution of enterprise information integration, better known as EII.

Straight-through Processing (STP), EAI, and EII

As client/server evolved into distributed computing, new buzzwords emerged. In

the early days, enterprise application integration (EAI) was very common, and as

time went on, achieving straight-through processing (STP) by leveraging EAI

became the trend. Today, the more commonly phrase enterprise information inte-

gration (EII) has come to the fore. We would like to provide a level of understanding

associated with each of these three commonly used acronyms:

. Enterprise Application Integration (EAI). The enabling of data sources and

applications to communicate with each other via a network without custom
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process and point-to-point connectivity software, often referred to as a “spa-

ghetti mess.” The resulting infrastructure replaced the spaghetti mess with

“middleware pipes.” Through middleware, information flows among the appli-

cations throughout the business units of an enterprise.

. Straight-through Processing (STP). Like EAI, STP is designed to provide end-

to-end business processing automatically and with little or no manual interven-

tion. Each application sends the information to an infrastructure that allows for

data processing, including data extraction, data parsing, data manipulation, and

data reformating. In addition, this infrastructure is required to provide intelli-

gent data routing and business processing to whatever end system or application

requires the data. This infrastructure, or hub, as it is commonly termed, will

provide the downstream applications with the data that they require in an auto-

mated fashion.

. Enterprise Information Integration (EII). The purpose of EII is to provide

access to data from multiple sources, making the request transparent to the

application. Thus, the data are automatically aggregated from the various

sources and the requesting application does not have to deal with determining

which source will provide which data, and with connecting to each source

directly. EII allows all back-end information to be seen as if it came from

one comprehensive, global database.

STP and EAI tend to go hand in hand; application integration is required to

achieve a near-real-time enterprise or STP. The progression to STP is a direct

response to various business drivers:

. In the financial industry, STP was driven by the initiative of moving trading to

clear in one day, a process commonly referred to as Tþ 1.

. Too many manual processes, which increased costs, errors, and processing time.

. The high cost of implementing computer systems.

. The high cost of maintaining computer systems.

. The business shifting focus to a customer service model.

Prior to the emergence of EAI and STP, the predominant system architectures

were “stovepiped” (see Figure 11.1), designed to run independently with no inter-

action. Examples are inventory control, human resources, and sales automation.

Over time, more and more lines of business required these systems to share infor-

mation, to get systems to share tasks and data and to eliminate the need for

custom code that is normally written. Typically, these were one-off efforts quite

often duplicated by different development groups supporting their respective

business units. This normally resulted in many versions of code performing the

same or very similar tasks and functions. Maintaining such point-to-point communi-

cation was very costly and yielded very few functional benefits. Companies started

looking at product solutions that would solve these problems and eliminate the

custom development that was in place.
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What began to emerge was a common process of separating how the applications

communicated, for involving data transformation and data representation. Connec-

tivity encompassed the physical hurdles of how the two processes or systems con-

nected to each other, which was typically via a network socket or through file

sharing, a more common process than one would expect. The second layer to connec-

tivity was the protocol. The protocol defines the logical interaction between the sys-

tems, things such as how to establish a connection, how to terminate a connection,

message headers and footers, message counting, how to identify missed messages,

and how to request a retransmission of missed messages. In regard to file sharing,

the functions included the FTP function, file checksums, and file ready for processing

flag. This process employed specialists for each system, network programming

specialists, and reams of specifications documenting every aspect of the process.

In conjunction with the system protocol were each system’s data formats. This

included message bodies, message headers and footers (separate from the communi-

cation protocol headers and footers), and field definitions. The message formats

ranged from some delimited format (the delimiters could be anything that the

developer of the system desired, typically a comma or any other character that

was not part of the information being sent), or an offset of field bit position and
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Figure 11.1. “Stovepiped” interprocess and intersystem connection architecture.

ENTERPRISE APPLICATION/INFORMATION INTEGRATION IN GRID 113



size (analogous to a pilot’s method of dead-reckoning navigation of an aircraft). The

developer knew the starting point of each field since specific sizes were sizes associ-

ated with the fields. By counting fields and field sizes, the developer had a good idea

of where the next field started and ended.

This process needed to be repeated for each system pair that wanted to commu-

nicate and share information and process. The end result was a rat’s nest of inter-

twining systems that cost more to operate and maintain than did the respective

systems themselves. As you can imagine, system maintenance and regression testing

were a nightmare; the smallest change in one system impacted other systems and

caused a cascading regression test and QA (quality assurance) cycle for all other

connected systems.

The business driver of shifting to a customer-focused view requires the ability to

deliver business processes to the consumer quickly and efficiently. Stovepiped data

centers and applications integrated via point-to-point custom code do not lend them-

selves to this level of business delivery, thus leading to new techniques of system

and application integration. This began the evolution to enterprise application inte-

gration (EAI).

The architecture for EAI and STP (see Figure 11.2) deals with the abstraction of

system conductivity. Systems that interact via the sharing of events and information

should be able to publish events leading to the sharing of information associated

with the respective events without having to worry about direct point-to-point com-

munication of any type, such as sockets. This concept describes one of the core func-

tions of what was termed “middleware.”

The EAI and STP architectures simplified matters, eliminating the complexity of

connectivity by ushering in a new technology (and family of jargon) of middleware.

The generic definition of middleware is software that connects two separate appli-

cations. It is sometimes referred to as “plumbing” or the “glue” that holds or con-

nects applications together and passes data between them. In practice, middleware

performs some wondrous feats. It provides a standard method and protocol for all

applications to communicate; it completely disconnects any one system from all

others that need its information to perform its own tasks; conversely, it can get to

any other systems’ data that it may need. This disconnect of systems allows for

system maintenance without adversely affecting every other system in the infor-

mation sharing chain simply by requiring a QA test with the middleware product.

Note that the data side of the system integration equation is still not addressed.

This is where we start to get into the wide variety of and differences in middleware

products. At the highest level, there are basically two types, messaging-oriented

middleware (MOM), and Common Object Request Broker Architecture

(CORBA). The former has an entire family tree of brothers, sisters, and distant cou-

sins, while the latter is attempting to fill the broader scope of service-oriented archi-

tecture (SOA), which has seen better days.

Messaging middleware has three basic flavors: simple queuing, where appli-

cations have “well known” inbound and outbound queues that anyone can access;

message routing features that will automatically deliver “published” messages to

all “subscribers” to that message; and data translation tools that will translate data
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from the originator’s format to the recipient’s format while it transports the data

between the two systems.

CORBA, on the other hand, encapsulates systems as a “service” and publishes its

services for other systems to access. The services include both data and function.

Data representation in a CORBA environment is common to all applications to

understand independent of hardware platform, implementation, and operating

environment. CORBA’s data representation is accomplished by using the Interface

Definition Language (IDL). A service “publishes” its interface by defining it in IDL

and then compiling it for source-level inclusion into the implementation of the ser-

vice code. Any CORBA service can be “located” simply by making a request to

the CORBA service broker. The requesting application has to know something

about the service it needs and through a series of inquiries can find out all the details

of the service in order to use it. As you can see, it can get quite complicated, and we

are only skimming the surface.

CORBA’s complexity and closed nature ultimately have led to its filling niche

markets only. However, the base technology and lessons learned have led to
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Figure 11.2. EAI and STP architectures.
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today’s current generation of service-oriented architecture, namely, Web Services

(see Figure 11.3 for a comparison of the two architectures).

As you can see, all the different versions and flavors of MOM and CORBA still

result in a complex network of stovepipes of middleware integration (see Figure

11.4) since each vendor’s software did not communicate to the other vendor soft-

ware. Without industry standards, connecting these stovepipes together still required

tremendous effort. That and consulting costs were the main reasons for middleware

vendor failure. Consulting costs were very high, and custom development was not

eliminated even though the applications did not have to worry about such tasks.

One of benefits of EAI is the ability to achieve zero latency, the real-time enter-

prise via a methodology called straight-through processing (STP).

Figure 11.5 shows the evolution from point-to-point to EAI/STP, the service-

oriented grid infrastructure.

It quickly became apparent that in order to achieve STP, a second front had to

be opened up on information integration: the evolution of enterprise information

integration (EII). Without the ability to represent the data independent of their

source, the full benefit of STP and EAI architectures cannot be realized. This leads to

fulfillment of the second of the two main components to system integration data. The

fundamental concept of abstraction of connectivity and data is evident in the service-

oriented architecture. SOA is flexible to adapt to and manage process-level and data-

level integration, or, as we have been discussing in this book, the compute grid plane

and the data grid plane. Grid technology is the evolution of middleware; it is the evol-

ution to the distributed computing environments given birth to by EAI, STP, and EII.

EII IN GRID

Data integration with grid computing builds on the concepts of EAI and EII,

which we have touched on in an earlier section. The data grid plane provides the
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focal point for data integration at the business service level. The core principles

for data integration in the data grid leverage the same “adapter” techniques from

STP; systems join the data grid in methods similar to those which they would

attach to an STP bus.
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One of the primary hurdles that had to be overcome in the EAI and EII evolution

was the integration of legacy systems, numerous systems that were built across a

long timeline. The people responsible for creating these systems—managers, archi-

tects, and programmers—have most likely migrated on to different groups or organi-

zations. The technology on which these legacy systems were built can be different

from the ones we are using today, technology that may not even be supported by the

vendor in the form in which it is used. How many systems have we come across that

are compiled against a third-party package, operating system, or an in-house library

that is no longer supported because upgrading one vendor’s version release will

cause integration failure or conflicts with other packages also linked into the

system? The inherent knowledge that is still part of the original project team may

have migrated with them in their advancing careers. Any system documentations

most likely do not capture all the nuances of the system, or the documentation

itself may be lost. The investment in time, resources, and cost in the adoption of

EAI, STP, and EII cannot be pushed aside, but rather leveraged in order to foster

quick adoption of the grid technology and movement to service-oriented offerings.

The adapter methodology, technology that is tested and working in production at

data centers, must be reused. The methodology for bringing the systems into the

STP-EII environment applies to grid computing and data grid integration.

We will see that the evolution of EII into the data grid goes beyond the mechanics

of EAI, STP, and EII simply for data integration. In order to provide services in a

quick and flexible manner, data management policies must be in place to describe

and manage data load and data store: data load policies for the import of data into

the data grid plane as well as the data store policies for the data export out of the

data grid plane. These data load/store policies must orchestrate with the other poli-

cies such as data synchronization policy. We will build on this relationship, which

has been introduced in earlier chapters.

EII within the data grid plane adds a layer of abstraction so that data movement

decisions are policy-driven rather than being programmed into the business appli-

cations and adapters that attached them to the data grid. We will look at the archi-

tectures of data load and data store as well as the interaction between these policies

and the other data management policies of distributed data management.

Natural Separation of Process and Data

Grid computing offers a natural separation of the process and the data. The compute

grid plane manages the execution of the business logic of a process, service, or appli-

cation. The data grid plane manages the data access, distribution, quality of service,

and availability of the business data used by the business logic executing in the com-

pute grid plane.

Let us start from the perspective of a developer—specifically, a developer using

object-oriented methodologies to implement a system. This is simply a tool enabling

us to visualize the separation of process and data management. Applications written

in non-object-oriented paradigm follow the same separation of process and data

separation in the grid. The point is more easily visualized in the following example.
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This is a fair assumption as most applications written since the mid-1990s use this

paradigm. Java, Cþþ, C#, and SmallTalk are object-oriented programming

languages, so the assumption is that if your application is written in one of these

languages, it uses object-oriented design principles. This statement may make

some people’s hair stand on end, as Cþþ does not enforce object-oriented prin-

ciples. This is a topic of discussion for another time. Please allow this indulgence

for the scope of this discussion.

The structure of business objects takes the form of methods and attributes.Methods

are the program or the business logic implementation of the object. The attributes are

the data with which the business logic operates in order to perform its function. The

following pseudocode shows a typical declaration of a business object:

1 public class FooBar

2 {

3 //NOTE TO THE READER

4 //A little Object Ease, Anything that is Public anyone can

access. Anything that

5 //is Private ONLY this business object can access.

6 //

7

8 //===== Declare the Business Data Attributes of the

Business Object =====

9 //declare the object’s Private Attributes

10 //

11 private String thisProcessName;

12 private Integer thisProcessState;

13

14

15 //===== Declare the Business Processes (Methods) of the

Business Object =====

16 //declare the object’s Public Methods

17 //

18

19 //===== Public Method – Constructs the Object =====

20 public FooBar()//Object Constrictor – used to put the

object in a well

21 //known state at its inception

22 {

23 thisProcessName="FooBar";

24 thisProcessState=0;

25 }

26

27 //===== Public Method – Change State =====

28 public void ChangeState()//Simple add one to the counter

29 {

30 thisProcessState=thisProcessState+1;

31 }

32
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33 //===== Public Method – Show the Business Process’s State

=====

34 public void HelloWorld()//prints out the object’s name and

state

35 {

36 print(‘‘Process Name is:’’+thisProcessName);

37 print(‘‘Process State is:’’+thisProcessState);

38 }

39

40 }//End Object Decloration

As is seen in this example, the data attributes are declared separately from the

business logic methods; however, the data are used, read, and modified in the

business methods. In a traditional compute environment, where FooBar executes

on a single machine, we do not think of this as two separate compute and data mana-

gement environments. The operating system creates a separate processing and

memory space for the executing program and manages both for us. In a grid environ-

ment, it is the compute grid plane that acts as the grid operating system for resource

and process execution and the data grid plane serves as the data management system

for the grid operating environment.

The compute grid plane keeps track of the compute nodes capable of executing

our business process FooBar. It also knows which of FooBar’s methods need to be

executed. It will make the best possible match of task and resource; therefore, it can

execute the “HelloWorld” method on compute node 1001 and the “ChangeState”

method on node 1275.

It is the data grid plane’s job to ensure that the data attributes of FooBar are avail-

able and in a consistent and correct state, accessible on both nodes 1001 and 1275

when needed.

Figure 11.6 shows the natural separation of compute and data management within

a grid.

Note that we will reference the FooBar code example throughout the remainder

of this chapter.

Data Load Policy

In Chapter 9, we discussed the basic principles of both data load and data store poli-

cies. Here, we will tackle the mechanical and operational aspects in data integration

and EII of the data grid through the data load and store policies.

From the application’s perspective, there are two ways to load data into the data

grid. First is the do-it-yourself approach. In the FooBar example, FooBar’s construc-

tor initializes the state of the business object by setting the name to FooBar and stage

to zero. In the ChangeState( ) operation, it modifies the state by adding one to the data

attribute. Basically FooBar loads and changes its data attributes itself. Specifically, it

loads in static values into the attributes. However, it could have just as easily have con-

nected to a database, queuing system, or file system to load in the value on construc-

tion or leveraged some other external data source to change its state.
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The data load policy comes into play when FooBar relies on the data grid for

loading some or all of its data attributes for it. For example, we can establish a

data load policy for FooBar as follows

DataLoadPolicy ¼ DLP

FooBar_DLP,

ExampleRegion,

Granularity Grouping 1ð Þ,Frequency 500ð Þð Þ,

FooBarFileAdapterð Þ

0

B

B

@

1

C

C

A

with a data synchronization policy of

SynchronizationPolicy¼ SP

FootBar_SP,

ExampleRegion,

Scope(Boundary(‘‘inter”),List(‘‘foobar_ProcessStage”)),

Transactionality(‘‘transactional ”),

LoadStore(List(‘‘Foobar_DLP”),List(‘‘FooBar_DSP”)),

Events(NULL)

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

Given the policies set above, FooBar can be modified as follows. Obviously

this omits details such as establishing a connection to the data grid and using

cumbersome get and set methods. The code snippet is for showing the concept

only. Working code examples are provided in a later chapter.

1 //===== Public Method – Constructs the Object =====

2 public FooBar()//Object Constrictor – used to put the object

in a well

Grid environment

Compute grid plane

Data grid plane 

Natural separation of

process and data

management

Logic

Business process

(object)

Data

Figure 11.6. Natural separation of process and data.
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3 //known state at its inception

4 {

5 thisProcessName="FooBar";

6 thisProcessState=dataGrid.get("ExampleRegion",

"foobar_ProcessState");

7 }

Here, we are creating a “local copy” of the “FooBar” process state contained in the

data grid. This local copy can be used elsewhere in the “FooBar” business process

and saved to the data grid when necessary.

Let us step through what happens when line 6 of the sample code above is executed.

First, we are assuming that we have a connection to the data grid, done earlier in the pro-

gram, which is represented by the “dataGrid” object. The “dataGrid.get( )” call has two

parameters; one is the data region, which in this example is “ExampleRegion.” The data

region is where the data atom “foobar_ProcessState” and the name of the data atom is re

sident, the second parameter to the “dataGrid.get( )” call. Since we have already defined

policies for synchronization and data load, the data grid will do the following:

if (‘‘foobar_ProcessState’’ Data Atom is resident in the Data

Grid)

then check to see if another process has a lock on it

if (‘‘foobar_ProcessState’’ Data Atom is locked)

then wait till lock is released

endif

Read and return value of ‘‘foobar_ProcessState’’ to the

business process

else

//The Data Atom ‘‘foobar_ProcessState’’ is NOT resident in the

//Data Grid

//As defined by the Data Load Policy use the Adapter

//‘‘FooBarFileAdapter()’’

//that knows where the file resides, external to the Data

//Region, access the file

//and get the value for ‘‘foobar_ProcessState’’, translate it

//to the proper data

//representation and populate the Data Atom

//‘‘foobar_ProcessState’’

Create and Lock the Data Atom ‘‘foobar_ProcessState’’

rawDataFormat=FooBarFileAdapter().load

//(‘‘foobar_ProcessState’’)

foobar_ProcessState=FooBarFileAdapter().translate

//(‘‘foobar_ProcessState’’)

Return the value of ‘‘foobar_ProcessState’’ to the business

//process

Release the lock on ‘‘foobar_ProcessState’’

end if

The end result of the business process FooBar is that the data it needs to perform

the function “foobar_ProcessState” are physically retrieved from another data
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source, stored in a foreign format in a transactional manner without any working

knowledge or code to do so. The entire process is defined by the data management

policies and managed by the data grid on behalf of FooBar.

Simple changes in the synchronization policy can have a major impact on the

behavior of the data grid and FooBar. For example, the data load policy can use a

different adapter, which will get the data from a completely different source and

data representation. Or the data synchronization policy can be switched to nontran-

sactional, which will eliminate the need to lock data atoms, thus speeding up the

entire process.

Figure 11.7 shows the separation of process and data management, the interaction

of policy and adapters to achieve true enterprise information integration in the grid

through the data grid’s distributed data management policies and function.
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Figure 11.7 shows an application process “joining a data region” that has syn-

chronization policies with a database and a second data region that in turn has a syn-

chronization policy with an STP message queuing bus. Also, there is an application

worklet that has joined both data regions. Both the application process and the work-

let can share and interact with data sets in the first region without requiring any

knowledge of where the data originate from, how the data are represented, or any

other mechanical aspect of data region integration.

Data Store Policy

The discussions on data store policy are very similar to those of the data load policy.

The differences are evident in the interaction with data sources and the effects of

data synchronization policy on the system behavior.

Note, as with the data load process—which has two choices for loading data into

the data grid—that an application can only save or store data out of the data grid

through its data management policies and procedures. In the ChangeState( ) oper-

ation, it modifies the state by adding to the data attribute. The result is then saved

to the data grid through the dataGrid.set( ) operation.

FooBar relies on the data grid to save some or all of its data attributes. For

example, we can establish a data store policy for FooBar as follows

DataStorePolicy ¼ DSP

FooBar_DSP,

ExampleRegion,

Granularity Grouping 1ð Þ,Frequency 500ð Þð Þ,

Operation ‘‘store ”ð Þ,

FooBarFileAdapterð Þ

0

B

B

B

B

@

1

C

C

C

C

A

with a data synchronization policy of

SynchronizationPolicy¼ SP

FooBar_SP,

ExampleRegion,

Scope(Boundary(‘‘inter”),List(‘‘foobar_ProcessStage”)),

Transactionality(‘‘transactional”),

LoadStore(List(‘‘FooBar_DLP”),List(‘‘FooBar_DSP”)),

Events(NULL)

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

The data store policy as defined above defines the data region as ExampleRegion with

a granularity of one grouping and 500 frequency. The operation to be performed is a

“store” function and the adapter being utilized is the FooBarFileAdapter( ).

The synchronization policy again is for the same data region ExampleRegion and

the Scope( ).

Given the policies defined above, the code for FooBar can be modified as

follows. Note that the code snippet is for showing the concept only. Working

code examples are provided in a later chapter.
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1 //===== Public Method – Change State =====

2 public void ChangeState()//Simple add one to the counter

3 {

4 dataGrid.set(‘‘ExampleRegion’’, ‘‘foobar_ProcessState’’,

(thisProcessState+1));

5 }

The “local copy” of the FooBar process state is being changed by incrementing

the state by one or adding one to it and then being stored into the data grid’s data

region, ExampleRegion’s data atom “foobar_ProcessState.”

Let us step through what happens when line 38 is executed. Please note the following:

. First, we are assuming that we have a connection to the data grid, established

earlier in the program, which is represented by the “dataGrid” object.

. The “dataGrid.set( )” call has three parameters.

. The data region ExampleRegion is where the data atom is found.

. “foobar_ProcessState” is the name of the data atom to set and the value to

which it is set.

Since we have defined policies for synchronization and data load, the data grid will

do the following:

if (‘‘foobar_ProcessState’’ Data Atom is NOT resident in the

Data Grid)

then create the Data Atom ‘‘foobar_ProcessState’’

if (‘‘foobar_ProcessState’’ Data Atom is locked)

then wait till lock is released

endif

//Place a lock on the Data Atom ‘‘foobar_ProcessState’’ so no one

//else can access

//it while the update is being performed.

//As defined by the Data Store Policy use the Adapter

//‘‘FooBarFileAdapter()’’

//that knows where the file resides, external to the Data

//Region, access the file

//and save the value for ‘‘foobar_ProcessState’’, translate it to

//the proper data

//representation

Lock the Data Atom ‘‘foobar_ProcessState’’

source_FormattedValue = FooBarFileAdapter().translate

(‘‘foobar_ProcessState’’)

FooBarFileAdapter().save(source_FormattedValue)

Release the lock on ‘‘foobar_ProcessState.’’

The end result to the business process FooBar is that the data it needs to perform

the function ‘‘foobar_ProcessState’’ are physically stored to the data grid and the
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transition required to update an external system is performed without any working

knowledge or code in the business process. The entire process is defined by the data

management policies and managed by the data grid on behalf of FooBar. This

allows for configurable changes to the policies without affecting any code in the

business processes.

Simple changes in the synchronization policy can have a major impact on the

behavior of the data grid and FooBar. For example, the data load policy can use a

different adapter that will save the data to a completely different source and data rep-

resentation. Or the data synchronization policy can be switched to nontransactional,

which will eliminate the need to lock data atoms, thus speeding up the entire process.

These kinds of policy changes are external to the business process, thus allowing

system changes to occur through the change of policy definitions.

Load, Store, and Synchronization

Interaction of the data load/store policies with data synchronization policies defines
the behavior of the data region and the exact QoS level required by the business ser-

vice that it supports. These policies in combination determine the transactional beha-

vior or transactional depth levels of a data region, which in turn determines the

performance of the region.

What are the “depth levels” of a transaction? The data grid, its data regions, and

its interactions with other data regions and external data sources have inherent levels

of depth. Are the data synchronized in a data region limited in scope to the bound-

aries of that region (i.e., intraregion synchronization)? This is the first level of depth,

internal to the data region. The next level, for example, applies if the data region

interacts with external data sources and is transactional; is it transactional to the

delivery of the data from the data region to the external source? The next-depth

level applies if the transaction has completed accessing the external data source

and reported the status back to the data region. Is the data atom/data region inter-

acting with more than one data source for a transaction, and are these transactions

processed independently of each other or grouped as a single unit?

Figure 11.8 highlights different depth levels, as an example.

This cascading effect—of pinpointing where the data delivery process occurs

within the chain of data sources, and whether the business service is satisfied that

the data are delivered—is referred to as the “depth levels” of a transaction.

Obviously, the data management policies of a data region can extend only so far

down into the behavior of an external source’s management of a transaction.

However, they can define the upper or closest levels to the business application as

it interacts with the data grid.

The data load, data store, and synchronization policies in combination all define

whether the data are to be managed in a best-faith delivery, data region transaction

delivery, or fully fault-tolerant delivery. Let us look at what each of these data deliv-

ery modes are, what types of applications they support, and exactly which para-

meters in the respective policies affect these desired behavior.
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Data management policies for load, store, and synchronization from the earlier

chapters where expressed as

DataLoadPolicy ¼ DLP

PolicyName;

Region;

Granularityð Þ;

Adapterð Þ

0

B

B

@

1

C

C

A

DataStorePolicy ¼ DSP

PolicyName;

Region;

Granularityð Þ;

Operationð Þ;

Adapterð Þ

0

B

B

B

B

@

1

C

C

C

C

A
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Figure 11.8. Level of depth of a transaction.
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SynchronizationPolicy ¼ SP

PolicyName;

Region;

Scopeð Þ;

Transactionalityð Þ;

LoadStoreð Þ;

Eventsð Þ
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B

B

B

B

B

@
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C

C

C

C

C

A

With the policies defined above, we will discuss the different delivery modes and

what they mean:

1. Best-Faith Delivery. This is the most “optimistic” of all delivery modes.

Here, the business service “trusts” the data grid to deliver the data in its own

good time. It is optimistic with respect to the data grid’s ability to deliver the

data. This mode of delivery is best used by applications that are dealing with data

that are time-critical and transient in nature. Examples of the types of applications

that require such a delivery mode include Monte Carlo simulations, and the delivery

of both news and quote data to trading applications. The data management policies

for the synchronization policy for this delivery mode of operation can be set

as follows:

SynchronizationPolicy ¼ SP

BestFaith_SP;

ExampleRegion;

Scope Boundary ‘‘inter”ð Þ; List ‘‘ foobar_ ProcessStage”ð Þð Þ;

Transactionality ‘‘nontransactional”ð Þ;

LoadStore NULL;NULLð Þ;

Events NULLð Þ

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

2. Data Region Transactional. This is where the data atoms within a data region

are transactional with their replicas distributed within the data region. This is

important for instances when a level of resilience to hard failures (e.g., failure of

compute nodes, or partial network outages) is required but 100% fault tolerance

is not essential. In this instance, parts of the data grid can fail but there will be no

data loss as part of this mode of delivery. This is best for applications where the

volume of data in a region is large and the cost of reload in the case of a failure

is too great, especially from an operational window perspective. In addition, appli-

cations that are mostly read-only or query-intensive are ideal for this type of mode

delivery. Examples are datamart, data warehouse, and OLAP applications. The data

management policies for both the load and the synchronization policies in this mode

of operation can be set as follows:

DataLoadPolicy ¼ DLP

DRTransLoad

ExampleRegion;

Granularity Grouping 1ð Þ;Frequency 500ð Þð Þ;

DRTransAdapter( )

0

B

B

B

@

1

C

C

C

A
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SynchronizationPolicy ¼ SP

DRTrans_SP;

ExampleRegion;

Scope Boundary ‘‘inra”ð Þ,NULLð Þ;

Transactionality ‘‘transactional”ð Þ;

LoadStore List ‘‘DRTransLoad”ð Þ;NULLð Þ;

Events NULLð Þ
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@
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3. Fault-Tolerant Transactional. This is the most pessimistic mode of operation

of all the delivery modes. In this mode, the business service has no faith in the data

grid’s ability to deliver data on its own and must confirm receipt of data delivery for

all transactions all the way from the final destination. The data atoms within a data

region are completely transactional down to and through the external data source,

where the external source confirms that the transaction is complete. The type of

applications for which this mode of delivery is best suited is where data delivery

is paramount and system performance is not. Examples of applications requiring

such a delivery mode are ATMs (automatic teller machines) and accounting and

banking systems. The data management policies in this mode of operation for the

load, store, and synchronization policies are highlighted below:

DataLoadPolicy ¼ DLP

FTTransLoad

ExampleRegion;

Granularity Grouping 1ð Þ;Frequency 500ð Þð Þ;

FTTransAdapterð Þ

0

B

B

@

1

C

C

A

DataStorePolicy ¼ DSP

FTTransStore

ExampleRegion;

Granularity Grouping 1ð Þ;Frequency 500ð Þð Þ;

Operation ‘‘store”ð Þ;

FTTransAdapterð Þ

0

B

B

B

B

@

1

C

C

C

C

A

SynchronizationPolicy ¼ SP

FTTrans_ SP;

ExampleRegion;

Scope Boundary ‘‘inter”ð Þ;NULLð Þ;

Transactionality ‘‘transactional”ð Þ;

LoadStore List ‘‘FTTransLoad”ð Þ; List ‘‘FTTransStore”ð Þð Þ;

Events NULLð Þ
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Enterprise Data Grid Integration

The buzzwords of enterprise application integration (EAI) and enterprise infor-

mation integration (EII) describe how applications and information from various

sources can be integrated into a larger, more purposeful, broad, and deep view of

an organization’s information at a business level. In these types of integration, we

are discussing how to manage data within a distributed computing environment,

which is just one system within an enterprise. As we have seen in the past with
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various database and middleware products, each of these products has its own

advantages and disadvantages. On the basis of these advantages and disadvantages,

an enterprise will have products from more than one vendor, thus creating the need

for EAI and EII. There may be queuing system products from IBM or Tibco, for

example. In addition, there may be database products from Sybase or Oracle; there-

fore, it is reasonable to expect that there will be various data grid products through-

out an enterprise. The combinations and permutations of data grids can be as great as

we have seen with database/middleware products. The same thing holds true for the

compute grid. Some grid vendors may have a metadictionary, while others may be

distributed-memory-based. There can be products from more than one grid vendor at

any one enterprise implementation. For example, a distributed-memory-based data

grid product from company A is used in one area of the organization while a differ-

ent area can use a data grid from company B. The reason for choosing a respective

product within the various areas within the organization is dependent on the business

and how the products support the business.

It is reasonable to expect that multiple data grid products will be employed

throughout an organization. Therefore, if we do not clearly define an interface for

how data grids, specifically data regions within data grids, can interact with each

other, then all we will have done is create larger data silos and a chasm that must

be crossed in order for those organizations to share data with each other. So let’s

create a new buzzword; if enterprise information integration deals with the inte-

gration of information across an entire enterprise, and if data grid is a single product

or single methodology for data integration within a grid, then enterprise data grid

integration (EDGI) refers to the interoperation of data grids across an enterprise.

EDGI is a subset or subcategory of EII. Armed with our new buzzword, let’s

review some of the data management policies for the data grid:

. Data distribution policy describes the distribution of data within the data grid or

the distribution of data atoms within a data grid.

. Data replication policy describes exactly how the data atoms are to be repli-

cated within a data region.

. Data load and data store define the mechanics, the adapters for moving data in

and out within a data region and the granularity of the data movement process.

. Event notification policies notify the registered synchronization policies (and

any other registered process for that event) that something—for example,

a data atom—has changed state and an action needs to be taken.

The synchronization policy, on the other hand, depends on these policies to perform

the mechanics of data movement within and between the data region and external

sources. Therefore, the data synchronization policy must deal with the public inter-

face for integration of data regions.

This raises an interesting question as to the definition of a data atom when the

boundaries of the data region are crossed. For the situation where the data atom is

identical between the two regions, synchronization is straightforward and any
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update of the data atom within a single region is replicated to the other region.

Therefore, part of this public interface is the definition of the data atom that

needs to be synchronized. There are two approaches to exactly where the data

atom definition resides. In the traditional STP/adapter approach, the data represen-
tation inherently was addressed through the data load and data store policies. These

policies leverage mechanics of the adapters, which know not only how to get data in

and out of a region but also the external data interface for the data atom.

An alternative approach would be to define a public interface or method for data

atom definition and have it either rolled into the synchronization policy or consumed

not by a policy of data management but rather by a query or data access method for

the data grid. The latter suggests that the definition of a data atom (for interregion

synchronization) is defined externally to the data management policies of the data

grid. It is defined as part of the “Service” the grid or data grid supports. In the

case of Web Services, XML is the standard method for defining a data atom.

Thus, if the data load and data store policies bind the physical adapter to the data

movement process, it is that adapter that “understands” the Web Service definition

of the data that are being moved. Therefore, data atom definition for interregion syn-

chronization is the responsibility of not the data region but rather the “Service” that

the data grid supports and the responsibility of the adapter to manage the mechanics

of data translation as part of the data movement process.
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